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Abstract

We study the forced convective heat transfer from a uniform temperature cylinder placed perpendicular to an otherwise uniform fluid
stream in a porous medium at finite values of the Péclet number. Attention is focused on how the absence of local thermal equilibrium
between the solid and fluid phases affects the temperature fields of the two phases and the rates of heat transfer from the cylinder. Detaile
numerical results are given for a wide range of parameter values. On the upstream side of the cylinder the temperature field extends furthel
from the cylinder in the solid phase than it does for the fluid phase, but the opposite is true on the downstream side.

0 2003 Elsevier SAS. All rights reserved.

Keywords: Forced convection; Porous media; Local thermal nonequilibrium; Cylinder; Finite Péclet number

1. Introduction see [2]. Detailed reviews of other research have been given
recently by Kuznetsov [3] and Vafai and Amiri [4].

Local thermal equilibrium in porous media is a state PP and Yan [5] studied high Péclet number forced
whereby the solid and fluid phases may be regarded as haySonvective heat transfer past a cylinder which is held at
ing the same temperature over length scales which are small!niform temperature and embedded in a porous medium.
compared with macroscopic scales, but which are large com-A thermal boundary layer is formed when the Péclet number
pared with the lengths associated with the microstructure of iS large and when local thermal equilibrium is valid. They
the porous medium. Many authors are now examining the found that it was possible to reduce the boundary layer
ramifications of relaxing this assumption by allowing the €equations to self-similar form and to obtain an analytical
temperatures of the phases to have different local temper-solution of the resulting equations. Rees et al. [6] solved the
atures. This does not mean that the fluid and the solid havesame problem but relaxed the assumption of local thermal
different temperatures at their interfaces, but rather that theequilibrium. In these cases the temperature field is no longer
mean temperatures over a suitable representative elementargelf-similar and it proves necessary to undertake the analysis
volume are not necessarily the same. Situations in which thenumerically. It was found that thermal equilibrium is always
two phases have markedly different thermal fields include attained at the rear stagnation point of the cylinder, but there
cases of rapid changes in heating where the speed of thecould be very marked differences between the temperature
advancing thermal front is different in each phase, at least fields of the fluid and solid phases at and near to the upstream
for short times; see [1]. They also include thermal boundary stagnation point.
layer flows where cold fluid is entrained into the boundary In this paper we also study forced convection flow past
layer which cools the fluid phase relative to the solid phase; a heated horizontal circular cylinder but supplement the

work of [6] by allowing the Péclet number to be finite. In
R _ this situation the governing equations for the temperature
(E:_Orrrglszggr‘gg ::stzgrér@bath.ac.uk (DAS. Rees). fields are no longer parabolic but are elliptic. Our problem is
1 Current address: Department of Mechanical Engineering, University formulated in Section 2, the numerical scheme is presented
of Sheffield, Sheffield, S10 2TN, UK. briefly in Section 3, while the numerical results are displayed
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Nomenclature
a radiusofcylinder......................... m  Greek symbols
c specific heat................... k@:;Kj o angular coordinate
h solld/_flwd h_eat transfer c_oeff|C|ent W—.K y modified conductivity ratio
H nondimensional solid/fluid heat transfer .
coefficient € porosity I
k thermal conductivity ............ wh-1.K-1 w flu!d V|sco.3|ty ................... ko --s .
K permeability of the porous medium........ 2m P fluiddensity ................. ... .. B
LTE  local thermal equilibrium ¢ temperature of fluid phase
LTNE local thermal nonequilibrium ¢ temperature of solid phase
Nu local Nusselt number , v streamfunction
p PreSSUME . ...\t eieeianannnns kyls .
Pe Péclet number Subscripts
q local rate of heat transfer c cylinder
0 global rate of heat transfer f fluid phase
r radial coordinate ................ ... ... m s solid phase
T dimensional temperature .................. K oo ambient condition
u Darcy velocity in the--direction ... .. .. st .
U dimensional free stream velocity . ... ... ant Superscript
v Darcy velocity in thex-direction . .. .. .. s 1 B dimensional variable

and discussed in Section 4. A brief conclusion closes the The pressure i$ and the temperaturg and the subscripts

paper. f ands denote the fluid and solid phases, respectively.
Eqg. (1) is nondimensionalised using the transformations
2. Formulation of the problem r=ar (22)
(u,v) =U(u,v) (2b)
We consider the forced convection flow past a heated
Tr=(T; — Tx)0 + T 2c
horizontal circular cylinder of radius, which is embedded 7 (e = To0)0 + Too (2¢)
in a porous medium. The dimensional free stream velocity s = (Te = To0)¢ + Too (2d)
is U and the temperatures of the cylinder and of the we also introduce the stream-functiah, according to
ambient fluid arel, and T, respectively, wher&;, > T. 19y
The governing steady two-dimensional equations for forced u = — ™ (2e)
convection flow are the equation of continuity, and roa
a(ru) dJv
— =0 la 0
o7 9a (12) v=—a—1f (2f)
h ial I i D s |
the radial and angular momentum equations (Darcy’s law), Egs. (1) now reduce to
i=-—2P (1b) 92 19 1 0%y
w or _I/Zf_,___l/f R A (3a)
. K1dp ar ror  rec oo
U T U Foa (1c) 1[829 196 1 aze}
and the respective energy equations for the fluid and solid Pe| 9r2 ~ r ar = r2 a2
phases, 1[0y 060 9y 96
3 =—[—I//———w—}+H(9—¢) (3b)
32Ty 19Ty 1 82Tf r| da dr  Or da
eky 0 Tttt oo
ar r oar re da 1 |:32¢ 19¢ 1 82¢
T 5oT — —+——+——i|=Hy(¢—9) (3¢c)
= (pc) s (ﬁ__f + 2_f> +h(Tf — Ty) (1d) Pe|l 8r2 " r ar r2da?
) ar r da , where
92T, 10T, 1 02T, ah
1-29)k (T+:—_+_— >=h(T_Tf) (1e) H = 4a
*\ 972 r or 72 o2 * U(pc) ¢ (42)

see [7]. In Egs. (1) andv denote the fluid flux velocities ek
in the radial and tangential directiorisande, respectively. ¥ = 73— ;- (4b)
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and was decided to employ a time-stepping method and there-
Ua(pc) s fore straightforward first-order time derivatives were added
Pe= ek ¢ (4c) to the right-hand sides of Eq. (7) to form an unsteady sys-

are dimensionless constants. Eqg. (3) is subject to the bound—tem of equations. Time steppl_ng was _undertaken using _the

ary conditions DuFort—Frankel method, details of YVhICh may be found in
many textbooks, such as that of Smith [8].

Yy=0, #=¢=1onr=1 and Only half the physical domain was used because the line

¥ —rsina, 6,¢— 0asr — oo (5) a =0, 7 is a line of symmetry, and, therefore, the fiest

derivative of bothp and¢ were set to zero at =0 andr.

The external boundary, located at a suitably large valug of

dis both an inflow and an outflow boundary. Fluid flows in

In the above equatior@e is a Péclet number based on the

fluid properties and scaled with the porosity, represents

the dimensionless interphase heat transfer coefficient an 1
. . o : the ranges7 < o < & and, therefore, we sét=¢ =0

y is a porosity-scaled conductivity ratio. Low valuesjof 2 1 _

generally correspond to a relatively poorly conducting fluid O that part of the boundary. In the rang&® < 5 fluid

such as air in a metallic porous medium. Foflpvalues flows out and, therefore, the choice of boundary condition is

of y local thermal equilibrium corresponds to large values More difficult since neither the temperatures nor their first
of H. derivatives are likely to be zero. Two different methods were

In nondimensional terms a uniform free stream is repre- used:
sented by = r sina. The appropriate solution of Eq. (3a)

which yields the uniform stream wheris large is (i) the second derivative with respectitavas set to zero,
and
Y= <r - %) sina (6) (i) a buffer region methodology was adopted.
Thus Egs. (3b) and (3c) become The first method was not found to be uniformly good and
17820 180 1 820 1 90 occasionally there were difficulties with pointwise spatial
Fe[m + Y or + r_ZW] = <1— ﬁ) Cosw -~ oscillations near outflow, and with lack of convergence
1 1 30 to the steady state. The second method is drawn from
— (; + r—3> sina T + HO —¢) (7a) recent work on the direct numerical simulation of boundary
5 ) layer instabilities where disturbances to the basic flow are
1 [3_¢ 1d¢ EM} — Hy(—6) (7b) artificially damped out by multiplying the disturbance field
Pel 9r2 * r dor r29a? by an appropriate function (which is equal to 1 over most

Numerical solutions are presented in subsequent section®f the computational domain, but which decreases smoothly
in the form of both local and global rates of heat transfer. to O at the outflow boundary); see [9]. While this method

The local rates of heat transfer are given by was designed for those boundary layer instabilities which
90 3¢ are absolute instabilities, we found that it also works well in
19 ="% ) 45s==3" (8) the present context when the outer boundary is sufficiently
r=1 r=1

) ) ) far from the cylinder. Surface rates of heat transfer were
while the global rates of heat transfer, which are defined as¢qnd to vary only very slightly indeed between different

the local values averaged betwees: 0 ande =z, are then ;65 of domain, and while the buffer region does modify the

given by temperature field locally, it has negligible upstream effect.
1 % 90 In fact, there is little difference in the results obtained
Oy = —;/a—r dor (%99) between methods (i) and (ii) except for near the outflow
0 r=1 boundary. However, it was found that method (ii) was more
and robust.
. The distance the thermal field penetrates into the sur-
0, = 1 / Ll da (9b) rounding porous medium depends very strongly on the val-
‘ b4 ) or |, ues ofPe and H, in particular, and, therefore, the maximum

value ofr used in the numerical simulations varied very con-

siderably. For large values & and H the valuermax =3

3. Numerical method was sufficient, whereas whée and H are relatively small
rmax Was sometimes greater than 100. In almost all cases

Eq. (7) was solved by means of second-order accuratethe number grid points in the-direction was 160. The size

central difference approximations. As iterative methods of- of the time-step is immaterial since the aim is to determine

ten need substantial under-relaxation to guarantee converthe resulting steady-state flow-field as efficiently as possi-

gence when parameters like the Péclet number are large, ible.



216 W.S Wong et al. / International Journal of Thermal Sciences 43 (2004) 213-220

4. Numerical solutions terms multiplyingH in Eq. (7) are of @QPe) relative to the
conduction terms.

There are three governing parameters which may vary  Fig. 2 corresponds to variations i whenPe = 100 and
independentlyPe, H and y. In Figs. 1-4 we display the ¥ =1, and the aim here is to see the effect of changes in
detailed isotherms for various cases, which illustrate the the ease with which heat may be transferred between the
full behaviour of the forced convection temperature fields. phases. Wher/ = 0.01 there is a considerable difference
In these figures the isotherms corresponding to the fluid in the spatial extent of the thermal fields since conductive
phase are displayed in the upper half, while the lower half effects dominate the movement of heat in the solid phase,

is reserved for the solid phase isotherms. since Eq. (7) fop and¢ is almost decoupled. Increasing the
Fig. 1 shows how the thickness of the thermal region value of H serves to allow a greater transfer of heat from
varies with Péclet wherH = y = 1. WhenPe is small, the solid phase into the fluid phase. As a result of this the

then conduction is much more significant than advection, at thickness of the fluid phase boundary layer increases slightly
least near the cylinder, and, therefore, there is an appreciablés H increases while that of the solid phase decreases until
conduction against the flow upstream of the cylinder. As they become identical at large values bf. We see that

Pe increases, advection becomes increasingly dominant.there remains a slight mismatch between the isotherms of
A thermal boundary forms on the upstream side of the the respective phases on the= 0 axis whenH = 10, but
cylinder accompanied by increasing rates of heat transfer.this has disappeared whéh= 100.

When the Péclet number reaches 1000 the boundary layer Similar variations inH are shown in Fig. 3 where we
has progressed much further round the cylinder, following have reduced the value of the Péclet numbeRete- 1. The

the flow, and is clearly evident on the downstream side. strength of the external flow is now@ of the strength of

At such values off andy, local thermal nonequilibrium  that corresponding to Fig. 2 and, therefore, the isotherms
(LTNE) effects are quite noticeable but are not too large, and €xtend much further from the cylinder in both phases for

may be seen most easily on the upstream sidéées 10 otherwise identical parameters. Once more, we see the facts
and Pe=100. They remain significant &= 1000 and that the solid phase isotherms extend considerably further

higher, but it is difficult to see them with the eye; that than those of the fluid phase wheéhis small, and that the
they remain significant has already been shown in [2]. On thermal become identical wheih becomes large.

the other hand, wheRe becomes small, then local thermal The final set of isotherms shown here are given in Fig. 4
equilibrium (LTE) is recovered gradually, as may be seen Where we see the effect of changesyirfor Pe= 100 and
by the Sma” mismatch between the isotherms Orb[tb:eﬂ,' H=1. For a” VaIUeS Of/ Wh|Ch are ShOWI’] there IS a S||ght

axis. At such small values conduction dominates, and the difference between the thermal fields of the phases, although
this disappears when s large. In such cases the solid field
may be seen, from Eq. (7b), to differ from the fluid field by
an amount which is @ 1), and, therefore, we have LTE in
the limit of largey even thoughH = 1. However, whery
is small, the temperature of the solid phase is affected much
more by conduction as the term coupling the phases in (7b)
is of O(y). On the other hand, the corresponding termin (7a)
remains of @1) and, therefore, the extent of the thermal field
of the fluid phase expands to follow that of the solid phase.
Figs. 5-8 show local rates of heat transfer which corre-
spond to the isotherm plots displayed in Figs. 1-4, respec-
tively. All these figures show very clearly how small the lo-
cal rate of heat transfer is at the rear stagnation point, where
the developing thermal lifts off the cylinder, compared with
the upstream stagnation point. This is especially true when
= Peis large, as shown in Figs. 5 and 6, in general.
—— In all cases the local heat transfer of the fluid phase
\ﬁ is higher than that of the solid phase over most of the
e cylinder and including the upstream stagnation point. Close
to the downstream stagnation point the fluid phase has the
Pe=100 Pe=1000 smaller rate of heat transfer since conduction is assisted

Fia. 1. Isoth lots for forced i . form ¢ . by advection. This is seen most clearly in Figs. 6 and 7
ig. 1. Isotherm plots for forced convection past a uniform temperature . o - . .
cylinder with H = y = 1. Isotherms for the fluid phase occupy the upper for which Pe= 100 andPe= 1, respectively, and different

half of each subfigure while the lower half corresponds to the solid phase. CUIVes Corre.Spond to different YalueSMf
Isotherms are plotted at intervals of 0.05; this convention also applies to  In both Figs. 6 and 7 the difference between cases for
Figs. 2-4. The values of the Péclet number ar¢01100, 1000. which H is small and those for whicl# is large is quite

Pe=1 Pe=10
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L =

=

H=1 H=10 H=100

Fig. 2. The effect of different values @ on the isotherms foPe= 100 andy = 1. The parameteH takes the values.01, 0.03,0.1, 1, 10 and 100.

H=1 H=10 H=100

Fig. 3. The effect of different values @&f on the isotherms foPe= 1 andy = 1. The parameteH takes the values.01, 0.03,0.1, 1, 10 and 100.

dramatic. At large values off the variations ofgy and obtained by either using a much finer grid, which will take
gs are very similar and differ by little. But, whe#/ is considerably more CPU time, or by using more sophisticated
small, g; varies only slightly, confirming the dominance of methods.

conduction, at least close to the cylinder itself. On the other ~ Table 1 shows how) ; and Q; vary with H whenH =

hand,q s still varies in the same manner as whins large, y = 1. The increase in the rate of heat transfer Witlis very

but with a slightly increased magnitude. evident, but it is worth noting that there is an approximately
Similar comments apply when we consider variations tenfold increase in bot® » andQ, asPeincreases from 10

in ¥, as shown in Fig. 8. Small values ¢f causeg; to to 1000. This is consistent with the boundary layer analysis

vary only slightly with position around the cylinder, while  of [6] where the local and global rates of heat transfer were

the opposite is true when is large. found to be proportional t8e'/? whenPe is large. The last

Finally, we consider some detailed values of the global two columns of Table 1 show ho® /Pe*/? and 0, /Pel/?
rates of heat transfer. The numbers displayed in each tablevary, and serves as check on the accuracy of the present
have errors which are less than 1%; higher accuracy can becomputations. In [6] it was found thle/Pel/2 =0.5858
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v =0.03

v =100

Fig. 4. The effect of different values ¢f on the isotherms foPe= 100 andH = 1. The parametey takes the values.01, 0.03,0.1, 1, 10 and 100.

30 j i i i Pe = 1000 12

a5, 5048 H =001

10r

= H =100
Pe = 1000 i

Pe = 300

H =0.01

.0

Fig. 5. Values ofz s (continuous lines) ang; (dashed lines) as functions
of o for H=y =1 andPe=1, 3,10, 30,100,300 and 1000. Atx ==
bothg s andg, increase wittPe.

Fig. 6. Values ofz s (continuous lines) ang; (dashed lines) as functions
of « for Pe= 100 andy =1 with H = 0.01,0.03,0.1,0.3,1, 3,10,30
and 100. Atx = bothg s andgs vary monotonically withA.

and Q,/Pe'/? = 0.3976 in the large Péclet number limit.  Table 1
Therefore, we conclude that our present computations areValues ofQ ; and Q; as a function oPewhenH =y =1

consistent with boundary layer theory. Pe 0 05 0 /Pel/2 0, /Pel/?
Tables 2 and 3 show the variations @fr and Q, with 1 06097 05391

H wheny =1 and wherPe = 100 andPe = 1, respectively. 3 10145 08337

The tendency noted earlier for LTE to be establishedias 10 18290 14049 05784 04443

increases may be seen clearly since the rétjg Qs — 1 30 a1727 23358 05793 04265

in this limit. It is also worthy of note that the degree of 100 28203 41463 05820 04146

In : y o € deg 300 101007 71209 05832 04111

LTNE not only decreases whet increases for fixed values 1000 185219 127876 05857 04044

of Pe, but also asPe decreases for fixed values &f. This
latter may be understood because the increasing dominance

of conduction as the primary mechanism of heat transfer become more equal. Mathematically, this is equivalent to
near the surface allows the phases more room in which tothe decreasing the effect of advection near the surface since
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1.2
Table 2
4525 H=001 Values ofQ ; and Q; as a function off whenPe =100 andy = 1
1.0y H Oy Os Qr/0s
0.01 7.0934 12614 56236
H = 100 0.03 69671 17620 39540
0. 17 0.1 6.7028 25122 26681
0.3 6.3191 33199 19034
1 58203 41463 14038
0. 3 54520 46652 11687
10 52326 49492 10573
30 51514 50503 10200
0. | H =0.01 100 51200 50888 10061
0.2r Table 3
Values ofQ  and Q; as a function off whenPe=1andy =1
. . . . H Y Q0 Qr/Q
0'8.0 0.2 0.4 0.6 0.8 1.0 / X L=
a/r 0.01 07554 03683 20510
0.03 07224 04141 17445
Fig. 7. Values of ¢ (continuous lines) angy (dashed lines) as functions 01 0.6858 04695 14607
of o for Pe=1 and y =1 with H = 0.01,0.03 0.1,0.3,1,3,10,30 03 0.6449 05086 12679
and 100. Alw =  bothg s andg, vary monotonically withA . 1 0.6096 05391 11308
3 0.5906 05564 10614
10 05799 05661 10244
30 05756 05700 10097
v =100 100 Q5737 05718 10033
10¢f 7
_______ 4 =100
q5:4s Table 4
st Values ofQ y and Q; as a function ofs whenPe= 100 andH =1
14 Oy Os Qr/0s
0.01 21141 Q7835 26983
U N/ P 2 R 0.03 28577 11574 24691
0.1 38737 18775 20632
0.3 48472 28338 17105
o . 1 58203 41463 14038
"""""""""""""""""" ¥ =0.01 3 6.4880 53536 12119
10 69179 63510 10893
------------------------------ 30 70970 68541 10354
o P 100 71717 70894 10116
/4 RIS =001
§.0 0.2 0.4 0.6 0.3 1.0 5. Conclusions

afm

In this paper we have examined the steady forced con-
vection boundary layer flow past a hot cylinder which is
embedded in a fluid-saturated porous medium where a two-
temperature model of the microscopic heat transfer between
the solid and fluid phases has been adopted. Detailed results

. . for a representative sets of parameters has been presented in
these terms are of ®e) relative to the conduction terms, 3 variety of forms: isotherm plots, variation of local rates

thereby rendering Egs. (7a) and (7b) identical at leading of heat transfer, and values of global rates of heat trans-
order inPe. fer.

Table 4 shows the effect of varyingwhenPe = 100 and When the Péclet number is large we find that our results
H = 1. The primary effect, as noted earlier, of small values compare very favourably with the boundary layer analysis
of y is to caused the thermal fields of both phases to expandof [6]. At small values ofPe the thermal field of both phases
relative to wheny is large, and, therefore, the associated spreads a considerable distance from the cylinder, and it
global rates of heat transfer decreasg atecreases. Itmay is hoped to be able to perform a smB#-analysis of this
also be seen that LTNE also becomes stronger in that limit, situation in the future.
which suggests that thermal conduction in the solid phases In general, the local rate of heat transfer decreases with
becomes significant. distance around the cylinder from the upstream stagnation

Fig. 8. Values ofg s (continuous lines) angs (dashed lines) as functions
of « for Pe= 100 andH =1 with y = 0.01,0.030.1,0.3,1, 3,10, 30
and 100. Atx = m bothg s andg;s increase withy .
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point. Initially, the value ofj;, is less than that af y because source: the Sparrow number, Internat. J. Heat Mass Transfer 42 (1999)
the thermal field of the solid phase is not affected directly ~ 3373-3385. _ _ _
by the oncoming stream and conducts a greater distance[zl D.A.S. Rees, |. Pop, Vertical free convection boundary layer flow in

. a porous medium using a thermal nonequilibrium model, J. Porous
upstream. However, further around the cylinder, where the M:dia3 (2000) 31-44. 9 a

main flow is tangential to the cylinder, heat begins to be [3] A.v. Kuznetsov, Thermal nonequilibrium forced convection in porous
advected strongly away from the cylinder in the fluid phase  media, in: D.B. Ingham, I. Pop (Eds.), Transport Phenomena in Porous

and therefore; s < g, in the region near the downstream Media, Pergamon, Oxford, 1998, pp. 103-129. .
stagnation point. [4] K. Vafai, A. Amiri, Non-Darcian effects in combined forced convective

. . . . flows, in: D.B. Ingham, |. Pop (Eds.), Transport Phenomena in Porous
It was found that LTE is established in the following Media Pergamoa Oxford 189(8 pp)_ 313_329_

separate limitsH — oo, y — oo andPe— 0. The first two [5] 1. Pop, B. Yan, Forced convection flow past a cylinder and a sphere in
of these have also been found in many other studies, but the a Darcian fluid at large Péclet numbers, Internat. Comm. Heat Mass
third is rather unusual. As noted above, the sriRallimit Transfer 25 (1998) 261-267.

corresponds to the dominance of conduction as a mechanisnio) D-A-S: Rees, A.P. Bassom, 1. Pop, Forced convection past a heated
cylinder in a porous medium using a thermal nonequilibrium model:

of heat transfer near the cylinder since Egs. (7a) and (7b) are  poundary layer analysis. Eur. J. Mech. B. Fluids, submitted for
identical at leading order in each phase wkerg 1. publication.
[7] D.A. Nield, A. Bejan, Convection in Porous Media, second ed.,
Springer, New York, 1999.
[8] G.D. Smith, Numerical Solution of Partial Differential Equations: Finite
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