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Abstract

We study the forced convective heat transfer from a uniform temperature cylinder placed perpendicular to an otherwise unif
stream in a porous medium at finite values of the Péclet number. Attention is focused on how the absence of local thermal e
between the solid and fluid phases affects the temperature fields of the two phases and the rates of heat transfer from the cylind
numerical results are given for a wide range of parameter values. On the upstream side of the cylinder the temperature field exte
from the cylinder in the solid phase than it does for the fluid phase, but the opposite is true on the downstream side.
 2003 Elsevier SAS. All rights reserved.
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1. Introduction

Local thermal equilibrium in porous media is a sta
whereby the solid and fluid phases may be regarded as
ing the same temperature over length scales which are s
compared with macroscopic scales, but which are large c
pared with the lengths associated with the microstructur
the porous medium. Many authors are now examining
ramifications of relaxing this assumption by allowing t
temperatures of the phases to have different local tem
atures. This does not mean that the fluid and the solid h
different temperatures at their interfaces, but rather tha
mean temperatures over a suitable representative eleme
volume are not necessarily the same. Situations in which
two phases have markedly different thermal fields incl
cases of rapid changes in heating where the speed o
advancing thermal front is different in each phase, at le
for short times; see [1]. They also include thermal bound
layer flows where cold fluid is entrained into the bound
layer which cools the fluid phase relative to the solid pha
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see [2]. Detailed reviews of other research have been g
recently by Kuznetsov [3] and Vafai and Amiri [4].

Pop and Yan [5] studied high Péclet number forc
convective heat transfer past a cylinder which is held
uniform temperature and embedded in a porous med
A thermal boundary layer is formed when the Péclet num
is large and when local thermal equilibrium is valid. Th
found that it was possible to reduce the boundary la
equations to self-similar form and to obtain an analyti
solution of the resulting equations. Rees et al. [6] solved
same problem but relaxed the assumption of local ther
equilibrium. In these cases the temperature field is no lon
self-similar and it proves necessary to undertake the ana
numerically. It was found that thermal equilibrium is alwa
attained at the rear stagnation point of the cylinder, but th
could be very marked differences between the tempera
fields of the fluid and solid phases at and near to the upstr
stagnation point.

In this paper we also study forced convection flow p
a heated horizontal circular cylinder but supplement
work of [6] by allowing the Péclet number to be finite.
this situation the governing equations for the tempera
fields are no longer parabolic but are elliptic. Our problem
formulated in Section 2, the numerical scheme is prese
briefly in Section 3, while the numerical results are displa
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Nomenclature

a radius of cylinder . . . . . . . . . . . . . . . . . . . . . . . . . m
c specific heat . . . . . . . . . . . . . . . . . . . kJ·kg−1·K−1

h solid/fluid heat transfer coefficient W·m−3·K−1

H nondimensional solid/fluid heat transfer
coefficient

k thermal conductivity . . . . . . . . . . . . W·m−1·K−1

K permeability of the porous medium. . . . . . . . m2

LTE local thermal equilibrium
LTNE local thermal nonequilibrium
Nu local Nusselt number
p̄ pressure . . . . . . . . . . . . . . . . . . . . . . . . kg·m−1·s−2

Pe Péclet number
q local rate of heat transfer
Q global rate of heat transfer
r radial coordinate . . . . . . . . . . . . . . . . . . . . . . . . . m
T dimensional temperature . . . . . . . . . . . . . . . . . . K
u Darcy velocity in ther-direction . . . . . . . m·s−1

U dimensional free stream velocity . . . . . . . m·s−1

v Darcy velocity in theα-direction . . . . . . . m·s−1

Greek symbols

α angular coordinate
γ modified conductivity ratio
ε porosity
µ fluid viscosity . . . . . . . . . . . . . . . . . . . kg·m−1·s−1

ρ fluid density . . . . . . . . . . . . . . . . . . . . . . . . kg·m−1

θ temperature of fluid phase
φ temperature of solid phase
ψ streamfunction

Subscripts

c cylinder
f fluid phase
s solid phase
∞ ambient condition

Superscript

¯ dimensional variable
the

ted
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the
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),

olid

s

s

ns
and discussed in Section 4. A brief conclusion closes
paper.

2. Formulation of the problem

We consider the forced convection flow past a hea
horizontal circular cylinder of radius,a, which is embedded
in a porous medium. The dimensional free stream velo
is U and the temperatures of the cylinder and of
ambient fluid areTc andT∞, respectively, whereTc > T∞.
The governing steady two-dimensional equations for for
convection flow are the equation of continuity,

∂(r̄ ū)

∂r̄
+ ∂v̄

∂α
= 0 (1a)

the radial and angular momentum equations (Darcy’s law

ū = −K

µ

∂p̄

∂r̄
(1b)

v̄ = −K

µ

1

r̄

∂p̄

∂α
(1c)

and the respective energy equations for the fluid and s
phases,

εkf

(
∂2Tf

∂r̄2 + 1

r̄

∂Tf

∂r̄
+ 1

r̄2

∂2Tf

∂α2

)

= (ρc)f

(
ū

∂Tf

∂r̄
+ v̄

r̄

∂Tf

∂α

)
+ h(Tf − Ts) (1d)

(1− ε)ks

(
∂2Ts

∂r̄2 + 1

r̄

∂Ts

∂r̄
+ 1

r̄2

∂2Ts

∂α2

)
= h(Ts − Tf ) (1e)

see [7]. In Eqs. (1)̄u and v̄ denote the fluid flux velocitie
in the radial and tangential directions,r̄ andα, respectively.
The pressure is̄p and the temperatureT and the subscript
f ands denote the fluid and solid phases, respectively.

Eq. (1) is nondimensionalised using the transformatio

r̄ = ar (2a)

(ū, v̄) = U(u, v) (2b)

Tf = (Tc − T∞)θ + T∞ (2c)

Ts = (Tc − T∞)φ + T∞ (2d)

We also introduce the stream-function,ψ , according to

u = 1

r

∂ψ

∂α
(2e)

and

v = −∂ψ

∂r
(2f)

Eqs. (1) now reduce to

∂2ψ

∂r2
+ 1

r

∂ψ

∂r
+ 1

r2

∂2ψ

∂α2
= 0 (3a)

1

Pe

[
∂2θ

∂r2
+ 1

r

∂θ

∂r
+ 1

r2

∂2θ

∂α2

]

= 1

r

[
∂ψ

∂α

∂θ

∂r
− ∂ψ

∂r

∂θ

∂α

]
+ H (θ − φ) (3b)

1

Pe

[
∂2φ

∂r2 + 1

r

∂φ

∂r
+ 1

r2

∂2φ

∂α2

]
= H γ (φ − θ) (3c)

where

H = ah

U(ρc)f
(4a)

γ = εkf
(4b)
(1− ε)ks
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Pe = Ua(ρc)f

εkf

(4c)

are dimensionless constants. Eq. (3) is subject to the bo
ary conditions

ψ = 0, θ = φ = 1 onr = 1 and

ψ → r sinα, θ, φ → 0 asr → ∞ (5)

In the above equationsPe is a Péclet number based on t
fluid properties and scaled with the porosity,H represents
the dimensionless interphase heat transfer coefficient
γ is a porosity-scaled conductivity ratio. Low values ofγ

generally correspond to a relatively poorly conducting fl
such as air in a metallic porous medium. For O(1) values
of γ local thermal equilibrium corresponds to large valu
of H .

In nondimensional terms a uniform free stream is rep
sented byψ = r sinα. The appropriate solution of Eq. (3
which yields the uniform stream whenr is large is

ψ =
(

r − 1

r

)
sinα (6)

Thus Eqs. (3b) and (3c) become

1

Pe

[
∂2θ

∂r2 + 1

r

∂θ

∂r
+ 1

r2

∂2θ

∂α2

]
=

(
1− 1

r2

)
cosα

∂θ

∂r

−
(

1

r
+ 1

r3

)
sinα

∂θ

∂α
+ H (θ − φ) (7a)

1

Pe

[
∂2φ

∂r2
+ 1

r

∂φ

∂r
+ 1

r2

∂2φ

∂α2

]
= H γ (φ − θ) (7b)

Numerical solutions are presented in subsequent sec
in the form of both local and global rates of heat trans
The local rates of heat transfer are given by

qf = −∂θ

∂r

∣∣∣∣
r=1

, qs = −∂φ

∂r

∣∣∣∣
r=1

(8)

while the global rates of heat transfer, which are define
the local values averaged betweenα = 0 andα = π , are then
given by

Qf = − 1

π

π∫
0

∂θ

∂r

∣∣∣∣
r=1

dα (9a)

and

Qs = − 1

π

π∫
0

∂φ

∂r

∣∣∣∣
r=1

dα (9b)

3. Numerical method

Eq. (7) was solved by means of second-order accu
central difference approximations. As iterative methods
ten need substantial under-relaxation to guarantee co
gence when parameters like the Péclet number are lar
-

s

-
t

was decided to employ a time-stepping method and th
fore straightforward first-order time derivatives were add
to the right-hand sides of Eq. (7) to form an unsteady s
tem of equations. Time stepping was undertaken using
DuFort–Frankel method, details of which may be found
many textbooks, such as that of Smith [8].

Only half the physical domain was used because the
α = 0, π is a line of symmetry, and, therefore, the firstα-
derivative of bothθ andφ were set to zero atα = 0 andπ .
The external boundary, located at a suitably large valuer,
is both an inflow and an outflow boundary. Fluid flows
the range1

2π < α < π and, therefore, we setθ = φ = 0
on that part of the boundary. In the range 0� α < 1

2π fluid
flows out and, therefore, the choice of boundary conditio
more difficult since neither the temperatures nor their firsr-
derivatives are likely to be zero. Two different methods w
used:

(i) the second derivative with respect tor was set to zero
and

(ii) a buffer region methodology was adopted.

The first method was not found to be uniformly good a
occasionally there were difficulties with pointwise spa
oscillations near outflow, and with lack of convergen
to the steady state. The second method is drawn f
recent work on the direct numerical simulation of bound
layer instabilities where disturbances to the basic flow
artificially damped out by multiplying the disturbance fie
by an appropriate function (which is equal to 1 over m
of the computational domain, but which decreases smoo
to 0 at the outflow boundary); see [9]. While this meth
was designed for those boundary layer instabilities wh
are absolute instabilities, we found that it also works wel
the present context when the outer boundary is sufficie
far from the cylinder. Surface rates of heat transfer w
found to vary only very slightly indeed between differe
sizes of domain, and while the buffer region does modify
temperature field locally, it has negligible upstream effe
In fact, there is little difference in the results obtain
between methods (i) and (ii) except for near the outfl
boundary. However, it was found that method (ii) was m
robust.

The distance the thermal field penetrates into the
rounding porous medium depends very strongly on the
ues ofPe andH , in particular, and, therefore, the maximu
value ofr used in the numerical simulations varied very co
siderably. For large values ofPe andH the valuermax = 3
was sufficient, whereas whenPe andH are relatively smal
rmax was sometimes greater than 100. In almost all ca
the number grid points in theα-direction was 160. The siz
of the time-step is immaterial since the aim is to determ
the resulting steady-state flow-field as efficiently as po
ble.
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4. Numerical solutions

There are three governing parameters which may v
independently,Pe, H and γ . In Figs. 1–4 we display th
detailed isotherms for various cases, which illustrate
full behaviour of the forced convection temperature fiel
In these figures the isotherms corresponding to the fl
phase are displayed in the upper half, while the lower
is reserved for the solid phase isotherms.

Fig. 1 shows how the thickness of the thermal reg
varies with Péclet whenH = γ = 1. When Pe is small,
then conduction is much more significant than advection
least near the cylinder, and, therefore, there is an apprec
conduction against the flow upstream of the cylinder.
Pe increases, advection becomes increasingly domin
A thermal boundary forms on the upstream side of
cylinder accompanied by increasing rates of heat tran
When the Péclet number reaches 1000 the boundary
has progressed much further round the cylinder, follow
the flow, and is clearly evident on the downstream s
At such values ofH and γ , local thermal nonequilibrium
(LTNE) effects are quite noticeable but are not too large,
may be seen most easily on the upstream side forPe = 10
and Pe = 100. They remain significant atPe = 1000 and
higher, but it is difficult to see them with the eye; th
they remain significant has already been shown in [2].
the other hand, whenPe becomes small, then local therm
equilibrium (LTE) is recovered gradually, as may be se
by the small mismatch between the isotherms on theα = π

axis. At such small values conduction dominates, and

Fig. 1. Isotherm plots for forced convection past a uniform tempera
cylinder with H = γ = 1. Isotherms for the fluid phase occupy the up
half of each subfigure while the lower half corresponds to the solid ph
Isotherms are plotted at intervals of 0.05; this convention also applie
Figs. 2–4. The values of the Péclet number are, 1,10,100,1000.
r

terms multiplyingH in Eq. (7) are of O(Pe) relative to the
conduction terms.

Fig. 2 corresponds to variations inH whenPe = 100 and
γ = 1, and the aim here is to see the effect of change
the ease with which heat may be transferred between
phases. WhenH = 0.01 there is a considerable differen
in the spatial extent of the thermal fields since conduc
effects dominate the movement of heat in the solid ph
since Eq. (7) forθ andφ is almost decoupled. Increasing t
value of H serves to allow a greater transfer of heat fr
the solid phase into the fluid phase. As a result of this
thickness of the fluid phase boundary layer increases slig
asH increases while that of the solid phase decreases
they become identical at large values ofH . We see tha
there remains a slight mismatch between the isotherm
the respective phases on theα = 0 axis whenH = 10, but
this has disappeared whenH = 100.

Similar variations inH are shown in Fig. 3 where w
have reduced the value of the Péclet number toPe = 1. The
strength of the external flow is now 0.01 of the strength o
that corresponding to Fig. 2 and, therefore, the isothe
extend much further from the cylinder in both phases
otherwise identical parameters. Once more, we see the
that the solid phase isotherms extend considerably fur
than those of the fluid phase whenH is small, and that the
thermal become identical whenH becomes large.

The final set of isotherms shown here are given in Fig
where we see the effect of changes inγ for Pe = 100 and
H = 1. For all values ofγ which are shown there is a slig
difference between the thermal fields of the phases, altho
this disappears whenγ is large. In such cases the solid fie
may be seen, from Eq. (7b), to differ from the fluid field
an amount which is O(γ −1), and, therefore, we have LTE i
the limit of largeγ even thoughH = 1. However, whenγ
is small, the temperature of the solid phase is affected m
more by conduction as the term coupling the phases in
is of O(γ ). On the other hand, the corresponding term in (
remains of O(1) and, therefore, the extent of the thermal fie
of the fluid phase expands to follow that of the solid phas

Figs. 5–8 show local rates of heat transfer which co
spond to the isotherm plots displayed in Figs. 1–4, res
tively. All these figures show very clearly how small the
cal rate of heat transfer is at the rear stagnation point, w
the developing thermal lifts off the cylinder, compared w
the upstream stagnation point. This is especially true w
Pe is large, as shown in Figs. 5 and 6, in general.

In all cases the local heat transfer of the fluid ph
is higher than that of the solid phase over most of
cylinder and including the upstream stagnation point. Cl
to the downstream stagnation point the fluid phase has
smaller rate of heat transfer since conduction is assi
by advection. This is seen most clearly in Figs. 6 an
for which Pe = 100 andPe = 1, respectively, and differen
curves correspond to different values ofH .

In both Figs. 6 and 7 the difference between cases
which H is small and those for whichH is large is quite
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Fig. 2. The effect of different values ofH on the isotherms forPe = 100 andγ = 1. The parameterH takes the values 0.01,0.03,0.1,1,10 and 100.

Fig. 3. The effect of different values ofH on the isotherms forPe = 1 andγ = 1. The parameterH takes the values 0.01,0.03,0.1,1,10 and 100.
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dramatic. At large values ofH the variations ofqf and
qs are very similar and differ by little. But, whenH is
small,qs varies only slightly, confirming the dominance
conduction, at least close to the cylinder itself. On the o
hand,qf still varies in the same manner as whenH is large,
but with a slightly increased magnitude.

Similar comments apply when we consider variatio
in γ , as shown in Fig. 8. Small values ofγ causeqs to
vary only slightly with position around the cylinder, whi
the opposite is true whenγ is large.

Finally, we consider some detailed values of the glo
rates of heat transfer. The numbers displayed in each
have errors which are less than 1%; higher accuracy ca
obtained by either using a much finer grid, which will ta
considerably more CPU time, or by using more sophistica
methods.

Table 1 shows howQf andQs vary with H whenH =
γ = 1. The increase in the rate of heat transfer withPe is very
evident, but it is worth noting that there is an approximat
tenfold increase in bothQf andQs asPe increases from 10
to 1000. This is consistent with the boundary layer anal
of [6] where the local and global rates of heat transfer w
found to be proportional toPe1/2 whenPe is large. The las
two columns of Table 1 show howQf /Pe1/2 andQs/Pe1/2

vary, and serves as check on the accuracy of the pre
computations. In [6] it was found thatQf /Pe1/2 = 0.5858
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Fig. 4. The effect of different values ofγ on the isotherms forPe = 100 andH = 1. The parameterγ takes the values 0.01,0.03,0.1,1,10 and 100.
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Fig. 5. Values ofqf (continuous lines) andqs (dashed lines) as function
of α for H = γ = 1 andPe = 1,3,10,30,100,300 and 1000. Atα = π

bothqf andqs increase withPe.

and Qs/Pe1/2 = 0.3976 in the large Péclet number lim
Therefore, we conclude that our present computations
consistent with boundary layer theory.

Tables 2 and 3 show the variations ofQf andQs with
H whenγ = 1 and whenPe = 100 andPe = 1, respectively.
The tendency noted earlier for LTE to be established aH

increases may be seen clearly since the ratioQf /Qs → 1
in this limit. It is also worthy of note that the degree
LTNE not only decreases whenH increases for fixed value
of Pe, but also asPe decreases for fixed values ofH . This
latter may be understood because the increasing domin
of conduction as the primary mechanism of heat tran
near the surface allows the phases more room in whic
e

Fig. 6. Values ofqf (continuous lines) andqs (dashed lines) as function
of α for Pe = 100 andγ = 1 with H = 0.01,0.03,0.1,0.3,1,3,10,30
and 100. Atα = π bothqf andqs vary monotonically withH .

Table 1
Values ofQf andQs as a function ofPe whenH = γ = 1

Pe Qf Qs Qf /Pe1/2 Qs/Pe1/2

1 0.6097 0.5391
3 1.0145 0.8337

10 1.8290 1.4049 0.5784 0.4443
30 3.1727 2.3358 0.5793 0.4265

100 5.8203 4.1463 0.5820 0.4146
300 10.1007 7.1209 0.5832 0.4111

1000 18.5219 12.7876 0.5857 0.4044

become more equal. Mathematically, this is equivalen
the decreasing the effect of advection near the surface s
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Fig. 7. Values ofqf (continuous lines) andqs (dashed lines) as function
of α for Pe = 1 and γ = 1 with H = 0.01,0.03,0.1,0.3,1,3,10,30
and 100. Atα = π bothqf andqs vary monotonically withH .

Fig. 8. Values ofqf (continuous lines) andqs (dashed lines) as function
of α for Pe = 100 andH = 1 with γ = 0.01,0.03,0.1,0.3,1,3,10,30
and 100. Atα = π bothqf andqs increase withγ .

these terms are of O(Pe) relative to the conduction term
thereby rendering Eqs. (7a) and (7b) identical at lead
order inPe.

Table 4 shows the effect of varyingγ whenPe = 100 and
H = 1. The primary effect, as noted earlier, of small valu
of γ is to caused the thermal fields of both phases to exp
relative to whenγ is large, and, therefore, the associa
global rates of heat transfer decrease asγ decreases. It ma
also be seen that LTNE also becomes stronger in that l
which suggests that thermal conduction in the solid pha
becomes significant.
Table 2
Values ofQf andQs as a function ofH whenPe = 100 andγ = 1

H Qf Qs Qf /Qs

0.01 7.0934 1.2614 5.6236
0.03 6.9671 1.7620 3.9540
0.1 6.7028 2.5122 2.6681
0.3 6.3191 3.3199 1.9034
1 5.8203 4.1463 1.4038
3 5.4520 4.6652 1.1687

10 5.2326 4.9492 1.0573
30 5.1514 5.0503 1.0200

100 5.1200 5.0888 1.0061

Table 3
Values ofQf andQs as a function ofH whenPe = 1 andγ = 1

H Qf Qs Qf /Qs

0.01 0.7554 0.3683 2.0510
0.03 0.7224 0.4141 1.7445
0.1 0.6858 0.4695 1.4607
0.3 0.6449 0.5086 1.2679
1 0.6096 0.5391 1.1308
3 0.5906 0.5564 1.0614

10 0.5799 0.5661 1.0244
30 0.5756 0.5700 1.0097

100 0.5737 0.5718 1.0033

Table 4
Values ofQf andQs as a function ofγ whenPe = 100 andH = 1

γ Qf Qs Qf /Qs

0.01 2.1141 0.7835 2.6983
0.03 2.8577 1.1574 2.4691
0.1 3.8737 1.8775 2.0632
0.3 4.8472 2.8338 1.7105
1 5.8203 4.1463 1.4038
3 6.4880 5.3536 1.2119

10 6.9179 6.3510 1.0893
30 7.0970 6.8541 1.0354

100 7.1717 7.0894 1.0116

5. Conclusions

In this paper we have examined the steady forced c
vection boundary layer flow past a hot cylinder which
embedded in a fluid-saturated porous medium where a
temperature model of the microscopic heat transfer betw
the solid and fluid phases has been adopted. Detailed re
for a representative sets of parameters has been presen
a variety of forms: isotherm plots, variation of local rat
of heat transfer, and values of global rates of heat tra
fer.

When the Péclet number is large we find that our res
compare very favourably with the boundary layer analy
of [6]. At small values ofPe the thermal field of both phase
spreads a considerable distance from the cylinder, an
is hoped to be able to perform a small-Pe analysis of this
situation in the future.

In general, the local rate of heat transfer decreases
distance around the cylinder from the upstream stagna
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point. Initially, the value ofqs is less than that ofqf because
the thermal field of the solid phase is not affected dire
by the oncoming stream and conducts a greater dist
upstream. However, further around the cylinder, where
main flow is tangential to the cylinder, heat begins to
advected strongly away from the cylinder in the fluid ph
and thereforeqf < qs in the region near the downstrea
stagnation point.

It was found that LTE is established in the followin
separate limits:H → ∞, γ → ∞ andPe → 0. The first two
of these have also been found in many other studies, bu
third is rather unusual. As noted above, the small-Pe limit
corresponds to the dominance of conduction as a mecha
of heat transfer near the cylinder since Eqs. (7a) and (7b
identical at leading order in each phase whenPe 	 1.
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